Reduced systemic advanced glycation end products in children receiving peritoneal dialysis with low glucose degradation product content.
نویسندگان
چکیده
BACKGROUND Glucose degradation products (GDP) in peritoneal dialysis (PD) solutions are toxic to the peritoneal membrane and promote the formation of advanced glycation end products (AGE), which contribute to accelerated atherosclerosis and amyloidosis. Double chamber PD solutions have a markedly reduced GDP content. METHODS We analysed GDP and AGE kinetics in 21 children (7 months to 18 years) on automated PD in a prospective multicentre trial with randomized administration of single chamber, high-GDP and double-chamber, low-GDP dialysis solution for 12 weeks each. Total AGE fluorescence, carboxymethyllysine (CML, ELISA) and 3-deoxyglucosone (3-DG, HPLC) were measured in plasma and PD effluent during a 4 h peritoneal equilibration test. Plasma AGE profiles were assessed by size selective gel permeation chromatography and compared with 23 healthy controls. RESULTS Initial effluent 3-DG concentrations were 140+/-55 and 25+/-4 micromol/l with high- and low-GDP PD fluid, respectively and declined to 53+/-32 and 7+/-2 micromol/l within 4 h dwell time (P<0.001). The ex vivo AGE generating capacity was three times higher with the high-GDP solution and decreased significantly with dwell time. Plasma AGE levels were 1.8-7.4-fold above those of healthy controls; the elevation was most marked for the small molecular fraction (<2 kDa). Plasma AGE and CML levels were significantly higher after 12 weeks exposure to high-GDP solution (20991+/-4145 AU and 1505+/-617 ng/ml) than following treatment with low-GDP fluid (17518+/-4676 AU and 1151+/-438 ng/ml; both P<0.05). Four hour AGE clearance was higher with low-GDP solution (0.74+/-0.3 vs 0.44+/-0.15 ml/min*1.73 m2, P<0.01). CONCLUSION GDP are rapidly absorbed from the peritoneal cavity. Administration of PD solutions with low-GDP content reduces plasma AGE levels and may thus improve the cardiovascular risk profile of dialysed children.
منابع مشابه
Determination of glyceraldehyde formed in glucose degradation and glycation.
Glyceraldehyde (GLA) was determined in glucose degradation and glycation. GLA was detected as a decahydroacridine-1,8-dione derivative on reversed phase HPLC using cyclohexane-1,3-dione derivatizing reagent. The glucose-derived GLA level was higher than the glycation-derived GLA level, because GLA was converted to intermediates and advanced glycation end products (AGE) in glycation. GLA was als...
متن کاملRe: effects of low-glucose degradation product solution on peritoneal membrane characteristics in peritoneal dialysis patients: a 3-year follow-up study.
Dear Editor, In the past issue of the Iranian Journal Kidney Disease, Park and colleagues compared the standard peritoneal dialysis (PD) solution to the low glucose degradation products (GDP) solution in a 3-year follow-up.1 Peritoneal dialysis (PD) is an effective and established form of renal replacement therapy in end -stage renal disease over the past 30 years, which is used by approximatel...
متن کاملInflammation in peritoneal dialysis.
During peritoneal dialysis, peritoneal cells are repeatedly exposed to a non-physiological hypertonic environment with high glucose content and low pH. Current sterile dialysis solutions cause inflammation in the submesothelial compact zone that leads to fibrosis, neoangiogenesis, progressive increases in solute transfer and even ultrafiltration failure. The peritoneal dysfunction will further ...
متن کاملAdvanced glycation end-products and peritoneal sclerosis.
Long-term continuous ambulatory peritoneal dialysis (CAPD) often causes peritoneal fibrosis and sclerosis with a loss of function, and some CAPD patients develop sclerosing encapsulating peritonitis. Glucose-based peritoneal dialysis fluids readily produce glucose degradation products by heat sterilization, and glucose degradation products accelerate the formation of advanced glycation end-prod...
متن کاملCytotoxic Glucose Degradation Products in Fluids for Peritoneal Dialysis
During the standard heat sterilization process of the lactate–buffered peritoneal dialysis solutions, glucose (an osmotic active substance) degrades to form compounds called glucose degradation products which are cytotoxic and affect the survival of the peritoneal membrane. This case presentation is based on an observation of 224 aseptic peritonitis cases of unknown etiology. For the purpose of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2007